Back to Search Start Over

Hybrid Performance Prediction Models for Fully-Connected Neural Networks on MPSoC

Authors :
Dariol, Quentin
Le Nours, Sebastien
Pillement, Sebastien
Stemmer, Ralf
Helms, Domenik
Grüttner, Kim
Institut d'Électronique et des Technologies du numéRique (IETR)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - pôle Sciences et technologie
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
German Aerospace Center (DLR)
Charlier, Sandrine
Source :
Colloque National du GDR SOC2, Colloque National du GDR SOC2, Jun 2022, Strasbourg, France., 2022
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

National audience; Predicting the performance of Artificial NeuralNetworks (ANNs) on embedded multi-core platforms is tedious.Concurrent accesses to shared resources are hard to model dueto congestion effects on the shared communication medium,which affect the performance of the application. In this paperwe present a hybrid modeling environment to enable fast yetaccurate timing prediction for fully-connected ANNs deployedon multi-core platforms. The modeling flow is based on theintegration of an analytical computation time model with acommunication time model which are both calibrated throughmeasurement inside a system level simulation using SystemC. Theproposed flow enables the prediction of the end-to-end latencyfor different mappings of several fully-connected ANNs with anaverage of more than 99 % accuracy.

Details

Language :
English
Database :
OpenAIRE
Journal :
Colloque National du GDR SOC2, Colloque National du GDR SOC2, Jun 2022, Strasbourg, France., 2022
Accession number :
edsair.dedup.wf.001..3face2d1a1aa22c5dc713e16f12065fb