Back to Search
Start Over
Experimental Investigations of Different Microphone Installations for Active Noise Control in Ducts
- Publication Year :
- 2006
- Publisher :
- Vienna, Austria : International Institute of Acoustics and Vibration, 2006.
-
Abstract
- A request on ventilation systems today is the feature of a low noise level. A common method to attenuate ventilation noise is to use passive silencers. However, such silencers are not suitable for the lowest frequencies and one solution is to use active noise control (ANC) to increase the noise attenuation in the low frequency range. Normally when using a feedforward ANC system to attenuate duct noise, both the reference microphone and the error microphone are exposed to airflow. As the airflow excites the diaphragm of the microphones, the microphone signals become contaminated by uncorrelated pressure fluctuations that are not part of the sound propagating in the duct. By reducing the flow velocity around the microphones, these uncorrelated pressure fluctuations can be reduced and the noise reduction improved. One way to reduce the flow velocity around the microphones is to place the microphones in outer microphone boxes connected to the duct via a small slit. In this paper a new practical design for the reduction of flow velocity around the microphones is presented; the microphone installation is based on a T-duct, and therefore it makes maintenance and especially construction easier, compared to the microphone box with a slit. Furthermore, comparative results concerning the performance of an ANC system for the two different microphone installations, the T-duct configurations and the microphone boxes with varying slit width, are presented. The results show that the active noise control performance is almost equal when using the suggested microphone installation as compared to when using a microphone box with a slit.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.dedup.wf.001..3c021bb2b52805da1bd1dc737eb12fdd