Back to Search Start Over

On the clustered shortest-path tree problem

Authors :
D Emidio, M.
Forlizzi, L.
Frigioni, D.
Leucci, S.
Guido PROIETTI
Source :
Scopus-Elsevier, Italian Conference on Theoretical Computer Science, pp. 263–268, Lecce, September 7-9 2016, info:cnr-pdr/source/autori:D'Emidio M.; Forlizzi L.; Frigioni D.; Leucci S.; Proietti G./congresso_nome:Italian Conference on Theoretical Computer Science/congresso_luogo:Lecce/congresso_data:September 7-9 2016/anno:2016/pagina_da:263/pagina_a:268/intervallo_pagine:263–268

Abstract

Given an n-vertex and m-edge non-negatively real-weighted graph G = (V,E,w), whose vertices are partitioned into a set of k clusters, a clustered network design problem on G consists of finding a (possibly optimal) solution to a given network design problem on G, subject to some additional constraint on its clusters. In this paper, we focus on the classic shortest-path tree problem and summarize our ongoing work in this field. In particular, we analyze the hardness of a clustered version of the problem in which the additional feasibility constraint consists of forcing each cluster to form a (connected) subtree.

Subjects

Subjects :
Computer Science (all)

Details

Database :
OpenAIRE
Journal :
Scopus-Elsevier, Italian Conference on Theoretical Computer Science, pp. 263–268, Lecce, September 7-9 2016, info:cnr-pdr/source/autori:D'Emidio M.; Forlizzi L.; Frigioni D.; Leucci S.; Proietti G./congresso_nome:Italian Conference on Theoretical Computer Science/congresso_luogo:Lecce/congresso_data:September 7-9 2016/anno:2016/pagina_da:263/pagina_a:268/intervallo_pagine:263–268
Accession number :
edsair.dedup.wf.001..3bc86434ed599afb01d2632de3c6a516