Back to Search Start Over

Effect of lipoprotein (a) on platelet activation induced by platelet-activating factor: role of apolipoprotein (a) and endogenous PAF-acetyllhydrolase

Authors :
Tsironis, L. D.
Mitsios, J. V.
Milionis, H. J.
Elisaf, M. S.
Tselepis, A. D.
Publication Year :
2004
Publisher :
Elsevier, 2004.

Abstract

Objective: Lipoprotein (a) [Lp(a)] is considered an atherogenic lipoprotein, which is also implicated in thrombosis. Lp(a) binds to platelets and modulates the effects of various platelet agonists. Platelet activating factor (PAF) is a potent platelet agonist degraded and inactivated by PAF-acetylhydrolase (PAF-AH), which in plasma is associated with lipoproteins. Lp(a) is enriched in PAF-AH, thus a functional characteristic of this lipoprotein is its capability to hydrolyze and inactivate PAF. In the present study, we investigated the effect of Lp(a) on PAF-incluced platelet activation. The potential roles of the apo(a) moiety and especially of the PAF-AH content of Lp(a) on the above effect were also addressed. Methods: Lp(a) was isolated by affinity chromatography from plasma of apparently healthy fasting donors with serum Lp(a) concentrations 20 mg/dl. Reduced Lp(a) [Lp(a-)] was prepared by incubation of Lp(a) with dithiothreitol (DTT), whereas inactivation of Lp(a)-associated PAF-AH was performed by incubation of Lp(a) with pefabloc [pefa-Lp(a)]. Platelet-rich plasma (PRP) or washed platelets were prepared from peripheral venous blood samples of normolipidemic, apparently healthy fasting donors with their serum Lp(a) levels lower than 0.8 mg/dl. The surface expression of the platelet integrin-receptor alpha(11b)beta(3) and the fibrinogen binding to the activated alpha(11b)beta(3) was studied by flow cytometry. Results: Lp(a), at doses higher than 20 mug/ml, inhibits PAF-induced platelet activation in a dose-dependent manner. Pefa-Lp(a), lacking PAF-AH activity, exhibited a similar to Lp(a) inhibitory effect. Importantly, the Lp(a) inhibitory effect was not influenced by the apo(a) isoform size, whereas Lp(a-) was a more potent inhibitor compared to Lp(a). Similarly to PAT, Lp(a) inhibits platelet aggregation induced by ADP or Calcium ionophore A23187. Lp(a), pefa-Lp(a) or Lp(a-) effectively inhibited PAF- or ADP-induced surface expression of alpha(11b)beta(3), the Lp(a-) being more potent compared to Lp(a) or to pefa-Lp(a). Finally, Lp(a) significantly inhibited fibrinogen binding to platelets activated with PAK Conclusions: Lp(a) inhibits PAF-induced platelet activation in a non-specific manner. The Lp(a)-associated PAF-AH does not play any important role in this effect, whereas the apo(a) moiety of Lp(a) significantly reduces its inhibitory effect. The inhibition of alpha(11b)beta(3) activation and fibrinogen binding to the activated platelets may represent the major mechanism by which Lp(a) inhibits PAF-induced platelet aggregation. (C) 2004 European Society of Cardiology. Published by Elsevier BN. All rights reserved. Cardiovasc Res

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..36c7b1f77a1e417b1470911c3e853e34