Back to Search Start Over

Modeling and Control of COVID-19 Epidemic through Testing Policies

Authors :
Niazi, Muhammad Umar
Kibangou, Alain
Canudas de Wit, Carlos
Nikitin, Denis
Tumash, Liudmila
Bliman, Pierre-Alexandre
Systèmes Commandés en Réseau (NECS-POST)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
Modelling and Analysis for Medical and Biological Applications (MAMBA)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
This work is partially supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERCAdG no. 694209,Scale-FreeBack, website:http://scale-freeback.eu/) and by Inria, France, in the framework of the COVID-19 fast-track research program.
European Project: 694209,Advanced Grant (AdG), ERC-2015-AdG ,Scale-FreeBack(2016)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Testing for the infected cases is one of the most important mechanisms to control an epidemic. It enables to isolate the detected infected individuals, thereby limiting the disease transmission to the susceptible population. However, despite the significance of testing policies, the recent literature on the subject lacks a control-theoretic perspective. In this work, an epidemic model that incorporates the testing rate as a control input is presented. The proposed model differentiates the undetected infected from the detected infected cases, who are assumed to be removed from the disease spreading process in the population. First, the model is estimated and validated for COVID-19 data in France. Then, two testing policies are proposed, the so-called best-effort strategy for testing (BEST) and constant optimal strategy for testing (COST). The BEST policy is a suppression strategy that provides a lower bound on the testing rate such that the epidemic switches from a spreading to a non-spreading state. The COST policy is a mitigation strategy that provides an optimal value of testing rate that minimizes the peak value of the infected population when the total stockpile of tests is limited. Both testing policies are evaluated by predicting the number of active intensive care unit (ICU) cases and the cumulative number of deaths due to COVID-19.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..350626f7c51529a0ad8917cee98247f4