Back to Search
Start Over
On developing ridge regression parameters: a graphical investigation
- Source :
- SORT-Statistics and Operations Research Transactions; 2012: Vol.: 36 Núm.: 2 July-December; p. 115-138, oai:raco.cat:article/260676, Repositori Institucional de la Universitat Rovira i Virgili, Universitat Rovira i virgili (URV), UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona
- Publication Year :
- 2012
- Publisher :
- Universitat Rovira i Virgili, 2012.
-
Abstract
- In this paper we review some existing and propose some new est imators for estimating the ridge parameter. All in all 19 different estimators have been stud ied. The investigation has been carried out using Monte Carlo simulations. A large number of differe nt models have been investigated where the variance of the random error, the number of variabl es included in the model, the correlations among the explanatory variables, the sample s ize and the unknown coefficient vector were varied. For each model we have performed 2000 replicati ons and presented the results both in term of figures and tables. Based on the simulation study, w e found that increasing the number of correlated variable, the variance of the random error and increasing the correlation between the independent variables have negative effect on the mean s quared error. When the sample size increases the mean squared error decreases even when the cor relation between the independent variables and the variance of the random error are large. In a ll situations, the proposed estimators have smaller mean squared error than the ordinary least squa res and other existing estimators
- Subjects :
- Estadística matemàtica
Mathematical statistics
LSE
MSE
Ridge regression
Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC]
Linear model
62 Statistics::62F Parametric inference [Classificació AMS]
62 Statistics::62J Linear inference, regression [Classificació AMS]
multicoll inearity
Multicollinearity
Monte Carlo simulations
Subjects
Details
- ISSN :
- 16962281
- Database :
- OpenAIRE
- Journal :
- SORT-Statistics and Operations Research Transactions; 2012: Vol.: 36 Núm.: 2 July-December; p. 115-138, oai:raco.cat:article/260676, Repositori Institucional de la Universitat Rovira i Virgili, Universitat Rovira i virgili (URV), UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona
- Accession number :
- edsair.dedup.wf.001..2a8959a7691d263357cac714a5dd42c0