Back to Search Start Over

Kernel-based extraction of Slow Features: Complex cells learn disparity and translation invariance from natural images

Authors :
Bray, Alistair
Martinez, Dominique
Neuromimetic intelligence (CORTEX)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Robust control of infinite dimensional systems and applications (CORIDA)
Institut Élie Cartan de Nancy (IECN)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Mathématiques et Applications de Metz (LMAM)
Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)
Loria, Publications
Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est
Source :
Neural Information Processing Systems-NIPS'02, Neural Information Processing Systems-NIPS'02, 2002, Vancouver, Canada, 8 p
Publication Year :
2002
Publisher :
HAL CCSD, 2002.

Abstract

Colloque avec actes et comité de lecture. internationale.; International audience; In Slow Feature Analysis (\cite{Wiskott02}), it has been demonstrated that high-order invariant properties can be extracted by projecting inputs into a nonlinear space and computing the slowest changing features in this space; this has been proposed as a simple general model for learning nonlinear invariances in the visual system. However, this method is highly constrained by the curse of dimensionality which limits it to simple theoretical simulations. This paper demonstrates that by using a different but closely-related objective function for extracting slowly varying features (\cite{Stone95a,Stone01}), and then exploiting the kernel trick, this curse can be avoided. Using this new method we show that both the complex cell properties of translation invariance and disparity coding can be learnt simultaneously from natural images when complex cells are driven by simple cells also learnt from the image.

Details

Language :
English
Database :
OpenAIRE
Journal :
Neural Information Processing Systems-NIPS'02, Neural Information Processing Systems-NIPS'02, 2002, Vancouver, Canada, 8 p
Accession number :
edsair.dedup.wf.001..27773d1001214134bde04bce917a7bd4