Back to Search Start Over

Numerical issues and turnpike phenomenon in optimal shape design

Authors :
Lance, Gontran
Trélat, Emmanuel
Zuazua, Enrique
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Control And GEometry (CaGE )
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
Universidad de Deusto (DEUSTO)
This project has received funding from the Grants ICON-ANR-16-ACHN-0014 and Finite4SoS ANR-15-CE23-0007-01 of the French ANR, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 694126-DyCon), the Alexander von Humboldt-Professorship program, the Air Force Office of Scientific Research under Award NO: FA9550-18-1-0242, Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain) and by the ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government, Transregio 154 Project *Mathematical Modelling, Simulation and Optimization using the Example of Gas Net-works* of the German DFG, the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 765579-ConFlex.
Roland Herzog
Matthias Heinkenschloss
Dante Kalise
Georg Stadler
Emmanuel Trélat
ANR-16-ACHN-0014,ICON,Interactions du Contrôle, les Équations aux Dérivées Partielles, et l'Analyse Numérique(2016)
ANR-15-CE23-0007,Finite4SoS,Commande et estimation en temps fini pour les Systèmes de Systèmes(2015)
European Project: 694126,DyCon
Source :
Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, Roland Herzog; Matthias Heinkenschloss; Dante Kalise; Georg Stadler; Emmanuel Trélat. Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, 29, De Gruyter, pp.343-366, 2022, Radon Series on Computational and Applied Mathematics, 9783110695960. ⟨10.1515/9783110695984⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; This article follows and complements where we have established the turnpike property for some optimal shape design problems. Considering linear parabolic partial differential equations where the shapes to be optimized acts as a source term, we want to minimize a quadratic criterion. Existence of optimal shapes is proved under some appropriate assumptions. We prove and provide numerical evidence of the turnpike phenomenon for those optimal shapes, meaning that the extremal time-varying optimal solution remains essentially stationary; actually, it remains essentially close to the optimal solution of an associated static problem.

Details

Language :
English
ISBN :
978-3-11-069596-0
ISBNs :
9783110695960
Database :
OpenAIRE
Journal :
Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, Roland Herzog; Matthias Heinkenschloss; Dante Kalise; Georg Stadler; Emmanuel Trélat. Optimization and control for partial differential equations: Uncertainty quantification, open and closed-loop control, and shape optimization, 29, De Gruyter, pp.343-366, 2022, Radon Series on Computational and Applied Mathematics, 9783110695960. ⟨10.1515/9783110695984⟩
Accession number :
edsair.dedup.wf.001..24c9f6ad12139dadaeae277a282aae45
Full Text :
https://doi.org/10.1515/9783110695984⟩