Back to Search Start Over

Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements

Authors :
Barreto Velasco, África
García Cabrera, Rosa Delia
Guirado-Fuentes, Carmen
Cuevas Agulló, Emilio
Almansa Rodríguez, Antonio Fernando
Milford, Celia
Toledano, Carlos
Expósito González, Francisco Javier
Díaz González, Juan Pedro
León-Luis, Sergio Fabián
Source :
ARCIMIS. Archivo Climatológico y Meteorológico Institucional (AEMET), Agencia Estatal de Meteorología (AEMET)
Publication Year :
2022
Publisher :
European Geosciences Union, 2022.

Abstract

A comprehensive characterisation of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out using long-term ground-based Aerosol Robotic NETwork (AERONET) photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m on the island of Tenerife. This site can be considered a sentinel for the passage of airmasses going to Europe from Africa, and therefore the aerosol characterisation performed here adds important information for analysing their evolution during their path toward Northern Europe. Two of these stations (Santa Cruz de Tenerife – SCO – at sea level and La Laguna – LLO – at 580 m a.s.l.) are located within the marine atmospheric boundary layer (MABL), and the other two (Izaña – IZO – at 2373 m a.s.l. and Teide Peak – TPO – at 3555 m a.s.l.) are high mountain stations within the free troposphere (FT). Monthly climatology of the aerosol optical depth (AOD), Ångström exponent (AE), aerosol concentration, size distribution and aerosol optical properties has been obtained for the MABL and FT. Measurements that are quite consistent across the four sites have been used to categorise the main atmospheric scenarios, and these measurements confirm an alternation between predominant background conditions and predominant dust-loaded Saharan air mass conditions caused by seasonal dust transport over the subtropical North Atlantic. Background conditions prevail in the MABL and FT for most of the year, while dust-laden conditions dominate in July and August. The authors also acknowledge the support from ACTRIS, Ministerio de Ciencia e Innovación, Spain, through the projects SYNERA (PID2020-118793GA-I00) and ePOLAAR (RTI2018-097864-BI00) and from Junta de Castilla y León (grant no. VA227P20).

Details

Database :
OpenAIRE
Journal :
ARCIMIS. Archivo Climatológico y Meteorológico Institucional (AEMET), Agencia Estatal de Meteorología (AEMET)
Accession number :
edsair.dedup.wf.001..2487747d8f1ff9d1a34c0f6cab76c6f8