Back to Search Start Over

Computation of the $\mathcal{L} \infty$ -norm of finite-dimensional linear systems

Authors :
Bouzidi, Yacine
Quadrat, Alban
Rouillier, Fabrice
Younes, Grace
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
Communications in Computer and Information Science, Communications in Computer and Information Science, 2021, Communications in Computer and Information Science, Springer Verlag, 2021
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; In this paper, we study the problem of computing the $\mathcal{L}\infty$- norm of finite-dimensional linear time-invariant systems. This problemis first reduced to the computation of the maximal x-projection of the real solutions $(x, y)$ of a bivariate polynomial system $\sum=\{P,{\frac{\partial{P}}{\partial{y}}}\}$, with ${P} \in \mathbb{Z}[x, y]$. Then, we use standard computer algebra methods to solve the problem. In this paper, we alternatively study a method based on rational univariate representations, a method based on root separation, and finally a method first based on the sign variation of the leading coefficients of the signed subresultant sequence and then based on the identification of an isolating interval for the maximal $x$-projection of the real solutions of $\sum$.

Details

Language :
English
ISSN :
18650929
Database :
OpenAIRE
Journal :
Communications in Computer and Information Science, Communications in Computer and Information Science, 2021, Communications in Computer and Information Science, Springer Verlag, 2021
Accession number :
edsair.dedup.wf.001..21094f9f8bb6cd735ea6cd2aa9441c98