Back to Search Start Over

Effect of bottom electrodes on HZO thin film properties

Authors :
Bertrand Vilquin
Greta Segantini
Benoit Manchon
Ingrid Cañero Infante
Pedro Rojo Romeo
Nicolas Baboux
Deleruyelle, D.
Rabei Barhoumi
INL - Hétéroepitaxie et Nanostructures (INL - H&N)
Institut des Nanotechnologies de Lyon (INL)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL)
Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
The I3E ECLAUSion project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801512.
Vilquin, Bertrand
Source :
International Symposium on Applications of Ferroelectrics (ISAF) 2021, International Symposium on Applications of Ferroelectrics (ISAF) 2021, https://isaf-isif-pfm2021.org/, May 2021, Sydney, Australia, HAL
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The discovery of memristor, theorized in 1971 by L. Chua, has led to the development of novel artificial neuromorphic concepts and devices, including ferroelectric-based ones. Ferroelectric Tunnel Junction (FTJ) type memristors based on zirconium-doped hafnium oxide, Hf_0.5 Zr_0.5 O_2 (HZO) have recently displayed to have synaptic learning capabilities [1]. In addition, HZO processes are already fully compatible with silicon CMOS industry with oxide layers thinner than 10 nm. In the present work, the HZO layer is realized by room temperature magnetron sputtering of a Hf_0.5 Zr_0.5 O_2 ceramic target and subsequently crystallized by rapid thermal annealing [2]. Using different bottom electrode (germanium, titanium nitride, platinum) layers grown on silicon and different substrates (n-doped silicon, n-doped germanium), we studied the effect on the stabilized crystalline phase and microstructure (Fig), band structure alignment and electrical properties of thin HZO films. Furthermore, we explored the effect of ultra-thin buffer layers between the electrodes and the HZO layer, including their material, insertion position and thickness. We exploited X-ray photoemission spectroscopy to analyze the chemistry and the electronic state of the electrodes/HZO interface. X-ray reflectometry and grazing incidence X-ray diffraction (GIXRD) were used to probe the thickness and structural characteristics of the HZO layer, whose ferroelectricity is associated to the polar orthorhombic phase. We will discuss our results in the framework of structural, chemical and physical properties of the different electrode/ferroelectric interfaces and their effect on the electrical properties of thin HZO-based junctions.References:[1] L. Chen et al. Nanoscale, vol. 10, no. 33, pp. 15826–15833, 2018.[2] J Bouaziz, et al., ACS Applied Electronic Materials 1 (9), 1740-1745, 2019.

Details

Language :
English
Database :
OpenAIRE
Journal :
International Symposium on Applications of Ferroelectrics (ISAF) 2021, International Symposium on Applications of Ferroelectrics (ISAF) 2021, https://isaf-isif-pfm2021.org/, May 2021, Sydney, Australia, HAL
Accession number :
edsair.dedup.wf.001..206513e7ba3d925e115efcaf5fdc8626