Back to Search Start Over

Mélange turbulent dans les mers indonésiennes

Authors :
Purwandana, Adi
STAR, ABES
Processus et interactions de fine échelle océanique (PROTEO)
Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN)
Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
Sorbonne Université
Pascale Bouruet-Aubertot
Yannis Cuypers
Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Source :
Oceanography. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS320⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The Indonesian seas are the area where the largest energy transfers from barotropic to baroclinic tides occur as shown by tidal model based studies. These processes make it a hotspot for turbulence as indirectly evidenced through the strong watermass mixing of Pacific waters flowing through the Indonesian Seas toward the Indian Ocean. The first part of this work aimed at better characterizing the strong spatial variability of turbulent mixing based on the analysis of a unique 26 years historical dataset of temperature and conductivity profiles. The classical Thorpe scale method, used to infer the dissipation rates from density measurements, was improved and validated against turbulence measurements. We showed that the turbulent kinetic energy dissipation is enhanced within straits and narrowing passages, in shallowing topography and mostly driven by semidiurnal, M2 internal tides. We then focused on internal solitary waves, a process easily identified from satellite imagery but rarely studied precisely in the area. Based on two-dimensional non-hydrostatic simulations we gave evidence of the full lifetime cycle of internal solitary waves observed in a coastal area in the Sulawesi Sea. We thus showed that the internal tide generated at the Sibutu passage evolves during its propagation leading to the formation of solitary waves that extract a significant part of the internal tide energy and eventually break in the northern coast of Sulawesi Island. We investigated the mechanisms driving the enhanced dissipation rates accompanying the shoaling internal waves in this region. To further explore these high-frequency processes tidally induced, we conducted a short-time mooring experiment in the Lombok Strait, one hot spot for internal solitary waves and proved that the maximum dissipation rate occurs at semi-diurnal frequency thus giving evidence of the semi-diurnal internal tide as a main driver for turbulence there.<br />La région des mers indonésiennes est la région la plus énergétique en termes de transfert de la marée barotrope vers la marée barocline comme démontré par des études s'appuyant sur des modèles de marée. Ces processus font des mers indonésiennes un des haut-lieux de la turbulence comme en témoigne le fort mélange des masses d'eaux originaires du Pacifique et s'écoulant à travers les détroits indonésiens vers l'océan Indien. La première partie de ce travail visait à mieux caractériser et comprendre la forte variabilité spatiale du mélange turbulent à partir de l'analyse d'un jeu de données historiques, sur une période de 26 ans, de profils de température et conductivité. La méthode classique de Thorpe, utilisée pour déduire les taux de dissipation à partir des inversions de densité, a été améliorée et validée avec des mesures microstructure de turbulence. Nous avons ainsi montré que la dissipation d'énergie cinétique turbulente est accrue dans les détroits et les passages étroits le long de la pente continentale et contrôlée majoritairement par la marée semi-diurne, M2. Nous nous sommes ensuite focalisés sur les ondes internes solitaires, un processus facilement identifié sur les images satellitaires mais rarement étudié précisément dans la région. À partir de simulations bidimensionnelles non hydrostatiques nous avons caractérisé le cycle de vie des ondes internes solitaires observées dans une zone côtière de la mer de Sulawesi. Nous avons ainsi montré que la marée interne générée dans le passage de Sibutu évolue au cours de sa propagation donnant naissance à des ondes internes solitaires qui déferlent sur la côte Nord de l'île de Sulawesi. Nous avons également estimé la part d'énergie de la marée interne transférée vers ces ondes et estimé les forts taux de dissipation associés au déferlement de ces ondes solitaires. Afin d'explorer plus en détail ces processus de haute fréquence induits par la marée, nous avons mené une campagne préliminaire dans le détroit de Lombok, un hot spot des ondes internes solitaires, en y déployant un mouillage. Nous avons ainsi montré que le maximum de dissipation se produit à une fréquence semi-diurne mettant ainsi en lumière le rôle moteur de la marée semi-diurne sur la turbulence dans cette région.

Details

Language :
English
Database :
OpenAIRE
Journal :
Oceanography. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS320⟩
Accession number :
edsair.dedup.wf.001..1f0e6a016e71accbef3aaf9be727b165