Back to Search
Start Over
Community Detection in Social Networks Using Snap.py Library
- Publication Year :
- 2019
- Publisher :
- Sveučilište u Zagrebu. Fakultet elektrotehnike i računarstva., 2019.
-
Abstract
- U ovom završnom radu obrađen je jedan od najvažnijih problema u analizi društvenih mreža, a to je otkrivanje zajednica. Opisana je struktura društvenih mreža i mjere pomoću kojih se one analiziraju. Objašnjeni su postupci grupiranja u teoriji grafova. Proučeni su i opisani Girvan-Newman i Clauset-Newman algoritmi za otkrivanje nepreklapajućih zajednica u društvenim mrežama. Navedeni algoritmi provedeni su nad stvarnim skupom podataka te nad umjetno stvorenim skupom primjenom Watts-Strogatz modela te je dana usporedba njihovih rezultata. Opisan je pojam small-world fenomena te razvoj i svojstva Watts-Strogatz modela. This paper discusses one of the most important issuses in social network analysis which is community detection. A detailed description of a social network structure is given and measures used to analyze them. Different clustering techniques used in graph theory are also described. Steps of Girvan-Newman and ClausetNewman Moore algorithms for community detection are shown. The two algorithms are implemented in Snap.py library and evaluated on five real-world datasets as well as on generated random small-world graphs. Small-world phenomenon is described along with the evolution and characteristics of the Watts-Strogatz model.
- Subjects :
- social networks
WattsStrogatz model
Snap.py library
small-world phenomenon
TEHNIČKE ZNANOSTI. Računarstvo
small-world efekt
Girvan-Newman algoritam
društvene mreže
otkrivanje zajednica
modularnost
Clauset-Newman-Moore algoritam
Watts-Strogatz model
knjižnica Snap.py
Girvan-Newman algorithm
TECHNICAL SCIENCES. Computing
Clauset-Newman-Moore algorithm
community detection
modularity
Subjects
Details
- Language :
- Croatian
- Database :
- OpenAIRE
- Accession number :
- edsair.dedup.wf.001..1cffd73ee8c946a040e91d02d928df3b