Back to Search Start Over

Graph classes with given 3-connected components: asymptotic counting, limit laws and critical phenomena

Authors :
Giménez Llach, Omer
Noy Serrano, Marcos
Rué Perna, Juan José
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publisher :
Edicions de la Universitat de Lleida (UdL)

Abstract

Consider a family T of 3-connected graphs, and let G be the class of graphs whose 3-connected components are graphs in T . We present a general framework for analyzing such graphs classes based on singularity analysis of generating functions. This generalizes previously studied cases such as planar graphs and seriesparallel graphs. We provide a general theorem for the asymptotic number of graphs in G, based on the singularities of the exponential generating function associated to T . We derive limit laws for the number of connected components, for the number of edges and for the number of 2-connected components. At last, for some classes under study we show the existence of critical phenomena as the edge density in the class varies.

Details

Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.dedup.wf.001..1b4858eb256ea00585f26bcd79f74e8c