Back to Search Start Over

Boosting applied to word sense disambiguation

Authors :
Escudero Bakx, Gerard|||0000-0002-4914-1686
Màrquez Villodre, Lluís
Rigau Claramunt, German
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2000

Abstract

In this paper we apply Schapire and Singer's AdaBoost.MH boosting algorithm to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar--based approaches, which represent state--of--the--art accuracy on WSD. In order to make boosting practical for a real learning domain of thousands of words we study several ways of accelerating the algorithm by reducing the feature space. The best variant, which we call LazyBoosting, is tested on a medium--large sense--tagged corpus containing 192,800 examples of the 191 most frequent and ambiguous English words. Again, boosting compares favourably to the other benchmank algorithms.

Details

Language :
English
Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.dedup.wf.001..1a92f02dd43060f57ee30e123d329e65