Back to Search Start Over

Classification of Multiple Sclerosis Clinical Forms Using Structural Connectome

Authors :
Kocevar, G.
Stamile, C.
Hannoun, S.
Cotton, François
Vukusic, S.
Durand-Dubief, F.
Sappey-Marinier, D.
RMN et optique : De la mesure au biomarqueur
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Service de Radiologie [Hôpital de la Croix-Rousse - HCL]
Hôpital de la Croix-Rousse [CHU - HCL]
Hospices Civils de Lyon (HCL)-Hospices Civils de Lyon (HCL)
Department of Neurology
CHU Lyon
Centre d'Etude et de Recherche Multimodal Et Pluridisciplinaire en imagerie du vivant (CERMEP - imagerie du vivant)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-CHU Grenoble-Hospices Civils de Lyon (HCL)-CHU Saint-Etienne-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Source :
11th ARSEP MRI Workshop-MOLECULAR & METABOLIC IMAGING IN MS, 11th ARSEP MRI Workshop-MOLECULAR & METABOLIC IMAGING IN MS, Feb 2016, Paris, France. ⟨10.13140/RG.2.1.2507.0968⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Multiple sclerosis (MS) is the most frequent disabling neurological disease in young adults with a national prevalence of 95/100 000 in France. Today’s neurologist challenge is to predict the individual patient evolution and response to therapy based on the clinical, biological and imaging markers available from disease onset. Since brain neural network constitutes one of the most complex network, graph theory constitutes a promising approach to characterize its connectivity properties. In this work, we applied this technique to diffusion tensor imaging data acquired in multiple sclerosis (MS) patients in order to classify their clinical forms. Support Vector Machine (SVM) algorithm in combination with graph kernel were used to classify 65 MS patients in the three different clinical forms. Results showed high classification performances using both weighted and unweighted connectivity graphs, the later being more stable, and less dependent to the pathological conditions.

Details

Language :
English
Database :
OpenAIRE
Journal :
11th ARSEP MRI Workshop-MOLECULAR & METABOLIC IMAGING IN MS, 11th ARSEP MRI Workshop-MOLECULAR & METABOLIC IMAGING IN MS, Feb 2016, Paris, France. ⟨10.13140/RG.2.1.2507.0968⟩
Accession number :
edsair.dedup.wf.001..14bbc19e59360220603ac280dad6e876
Full Text :
https://doi.org/10.13140/RG.2.1.2507.0968⟩