Back to Search Start Over

Estimation of plant and canopy architectural traits using the D3P Digital Plant Phenotyping Platform

Authors :
Liu, Shouyang
Martre, Pierre
Buis, Samuel
Abichou, Mariem
Andrieu, Bruno
Baret, Frederic
Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH)
Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Écophysiologie des Plantes sous Stress environnementaux (LEPSE)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)
Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
ANR-11-INBS-0012
ANR-11-INBS-0012,PHENOME,Centre français de phénomique végétale(2011)
Source :
Plant Physiology, Plant Physiology, American Society of Plant Biologists, 2019, 181 (3), pp.881-890. ⟨10.1104/pp.19.00554⟩, Plant Physiology 3 (181), 881-890. (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; The extraction of desirable heritable traits for crop improvement from high-throughput phenotyping (HTP) observations remains challenging. We developed a modeling workflow named Digital Plant Phenotyping Platform, D3P, to access crop architectural traits from HTP observations. D3P couples the ADEL (architectural model of development based on L-systems) wheat (Triticum aestivum) model, that describes the time course of the three-dimensional architecture of wheat crops, with simulators of images acquired with HTP sensors. We demonstrated that a sequential assimilation of the green fraction derived from RGB (Red Green Blue) images of the crop into D3P provides accurate estimates of five key parameters (phyllochron, lamina length of the first leaf, rate of elongation of leaf lamina, number of green leaves at the start of leaf senescence and minimum number of green leaves) of the ADEL-Wheat model that drive the time course of green area index and the number of axes with more than three leaves at the end of the tillering period. However, leaf and tiller orientation and inclination characteristics were poorly estimated. D3P was also used to optimize the observational configuration. The results, obtained from in silico experiments conducted on wheat crops at several vegetative stages, showed that the accessible traits could be estimated accurately with observations made at 0{degree sign} and 60{degree sign} zenith view inclination with a temporal frequency of 100 {degree sign}Cd. This illustrates the potential of the proposed holistic approach that integrates all the available information into a consistent system for interpretation. The potential benefits and limitations of the approach are further discussed.

Details

Language :
English
ISSN :
00320889 and 15322548
Database :
OpenAIRE
Journal :
Plant Physiology, Plant Physiology, American Society of Plant Biologists, 2019, 181 (3), pp.881-890. ⟨10.1104/pp.19.00554⟩, Plant Physiology 3 (181), 881-890. (2019)
Accession number :
edsair.dedup.wf.001..12b38cd8bce7ed7bbd0f605f0265ee1c