Back to Search Start Over

Stratification of asthma phenotypes by airway proteomic signatures

Authors :
Schofield, James P.R.
Burg, Dominic
Nicholas, Ben
Strazzeri, Fabio
Brandsma, Joost
Staykova, Doroteya
Folisi, Caterina
Bansal, Aruna T.
Xian, Yang
Guo, Yike
Rowe, Anthony
Corfield, Julie
Wilson, Susan
Ward, Jonathan
Lutter, Rene
Shaw, Dominick E.
Bakke, Per S.
Caruso, Massimo
Dahlen, Sven Erik
Fowler, Stephen J.
Howarth, Peter
Krug, Norbert
Montuschi, Paolo
Sanak, Marek
Sun, Kai
Pandis, Ioannis
Riley, John
Auffray, Charles
De Meulder, Bertrand
Lefaudeux, Diane
Sousa, Ana R.
Adcock, Ian M.
Chung, Kian Fan
Sterk, Peter J.
Skipp, Paul J.
Djukanovi?, Ratko
Ahmed, H.
Allen, D.
Badorrek, P.
Ballereau, S.
Baribaud, F.
Bedding, A.
Behndig, A. F.
Berglind, A.
Berton, A.
Bigler, J.
Boedigheimer, M. J.
Brinkman, P.
Bush, A.
Campagna, D.
Casaulta, C.
Chaiboonchoe, A.
Davison, T.
De Meulder, B.
Delin, I.
Dennison, P.
Dodson, P.
El Hadjam, L.
Erzen, D.
Faulenbach, C.
Fichtner, K.
Fitch, N.
Formaggio, E.
Gahlemann, M.
Galffy, G.
Garissi, D.
Garret, T.
Gent, J.
Guillmant-Farry, E.
Henriksson, E.
Hoda, U.
Hohlfeld, J. M.
Hu, X.
James, A.
Johnson, K.
Jullian, N.
Kerry, G.
Knowles, R.
Konradsen, J. R.
Kretsos, K.
Krueger, L.
Lantz, A. S.
Larminie, C.
Latzin, P.
Lefaudeux, D.
Lemonnier, N.
Lowe, L. A.
Lutter, R.
Manta, A.
Mazein, A.
McEvoy, L.
Menzies-Gow, A.
Mores, N.
Murray, C. S.
Nething, K.
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

© 2019 Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.

Details

Language :
English
ISSN :
00916749 and 10976825
Database :
OpenAIRE
Accession number :
edsair.core.ac.uk....ee22f3d6c6593044b41d368d8ee169b8