Back to Search
Start Over
Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism
- Publication Year :
- 2008
- Publisher :
- Company of Biologists, 2008.
-
Abstract
- Plasmodium falciparum, the causative agent of malaria, relies on a complex protein-secretion system for protein targeting into numerous subcellular destinations. Recently, a homologue of the Golgi re-assembly stacking protein (GRASP) was identified and used to characterise the Golgi organisation in this parasite. Here, we report on the presence of a splice variant that leads to the expression of a GRASP isoform. Although the first GRASP protein (GRASP1) relies on a well-conserved myristoylation motif, the variant (GRASP2) displays a different N-terminus, similar to GRASPs found in fungi. Phylogenetic analyses between GRASP proteins of numerous taxa point to an independent evolution of the unusual N-terminus that could reflect unique requirements for Golgi-dependent protein sorting and organelle biogenesis in P. falciparum. Golgi association of GRASP2 depends on the hydrophobic N-terminus that resembles a signal anchor, leading to a unique mode of Golgi targeting and membrane attachment.
Details
- Language :
- English
- ISSN :
- 00219533
- Database :
- OpenAIRE
- Accession number :
- edsair.core.ac.uk....b7d4f4d6a7ad20107e3646161bd85a26