Back to Search
Start Over
Multimodal x-ray microanalysis of a UFeO4 : evidence for the environmental stability of ternary U(v) oxides from depleted uranium munitions testing
- Publication Year :
- 2020
- Publisher :
- Royal Society of Chemistry (RSC), 2020.
-
Abstract
- An environmentally aged radioactive particle of UFeO4 recovered from soil contaminated with munitions depleted uranium (DU) was characterised by microbeam synchrotron X-ray analysis. Imaging of uranium speciation by spatially resolved X-ray diffraction (μ-XRD) and X-ray absorption spectroscopy (μ-XAS) was used to localise UFeO4 in the particle, which was coincident with a distribution of U(V). The U oxidation state was confirmed using X-ray Absorption Near Edge Structure (μ-XANES) spectroscopy as +4.9 ± 0.15. Le-Bail fitting of the particle powder XRD pattern confirmed the presence of UFeO4 and a minor alteration product identified as chernikovite (H3O)(UO2)(PO4)·3H2O. Refined unit cell parameters for UFeO4 were in good agreement with previously published values. Uranium–oxygen interatomic distances in the first co-ordination sphere were determined by fitting of Extended X-ray Absorption Fine Structure (μ-EXAFS) spectroscopy. The average first shell U–O distance was 2.148 ± 0.012 Å, corresponding to a U valence of +4.96 ± 0.13 using bond valence sum analysis. Using bond distances from the published structure of UFeO4, U and Fe bond valence sums were calculated as +5.00 and +2.83 respectively, supporting the spectroscopic analysis and confirming the presence of a U(V)/Fe(III) pair. Overall this investigation provides important evidence for the stability of U(V) ternary oxides, in oxic, variably moist surface environment conditions for at least 25 years.
Details
- Language :
- English
- ISSN :
- 20507887
- Database :
- OpenAIRE
- Accession number :
- edsair.core.ac.uk....2afb8e4a44b9bdbc69d444c0c3961e55