Back to Search Start Over

Non-similar radiative bioconvection nanofluid flow under oblique magnetic field with entropy generation

Authors :
Shukla, N
Rana, P
Kuharat, S
Beg, OA
Publication Year :
2022
Publisher :
Shahid Chamran University of Ahvaz, Iran, 2022.

Abstract

Motivated by exploring the near-wall transport phenomena involved in bioconvection fuel cells combined with electrically conducting\ud nanofluids, in the present article, a detailed analytical treatment using homotopy analysis method (HAM) is presented of non-similar\ud bioconvection flow of a nanofluid under the influence of magnetic field (Lorentz force) and gyrotactic microorganisms. The flow is induced\ud by a stretching sheet under the action of a oblique magnetic field. In addition, nonlinear radiation effects are considered which are\ud representative of solar flux in green fuel cells. A second thermodynamic law analysis has also been carried out for the present study to\ud examine entropy generation (irreversibility) minimization. The influence of magnetic parameter, radiation parameter and bioconvection\ud Rayleigh number on skin friction coefficient, Nusselt number, micro-organism flux and entropy generation number (EGN) is visualized\ud graphically with detailed interpretation. Validation of the HAM solutions with published results is also included for the non-magnetic case in\ud the absence of bioconvection and nanofluid effects. The computations show that the flow is decelerated with increasing magnetic body\ud force parameter and bioconvection Rayleigh number whereas it is accelerated with stronger radiation parameter. EGN is boosted with\ud increasing Reynolds number, radiation parameter and Prandtl number whereas it is reduced with increasing inclination of magnetic field.

Subjects

Subjects :
Physics::Fluid Dynamics

Details

Language :
English
ISSN :
23834536
Database :
OpenAIRE
Accession number :
edsair.core.ac.uk....2a4c1dac686c867df5c6f1550bb18c70