Back to Search Start Over

SIGNAL SPARSITY ESTIMATION FROM COMPRESSIVE NOISY PROJECTIONS VIA gamma-SPARSIFIED RANDOM MATRICES

Authors :
Ravazzi, C.
Fosson, S. M.
Bianchi, T.
Magli, E.
Source :
IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 4029–4033, Shanghai, China, 20-25/3/2016, info:cnr-pdr/source/autori:Ravazzi, C.; Fosson, S. M.; Bianchi, T.; Magli, E./congresso_nome:IEEE International Conference on Acoustics, Speech, and Signal Processing/congresso_luogo:Shanghai, China/congresso_data:20-25%2F3%2F2016/anno:2016/pagina_da:4029/pagina_a:4033/intervallo_pagine:4029–4033
Publication Year :
2016
Publisher :
IEEE Service Center, Piscataway, NJ , Stati Uniti d'America, 2016.

Abstract

In this paper, we propose a method for estimating the sparsity of a signal from its noisy linear projections without recovering it. The method exploits the property that linear projections acquired using a sparse sensing matrix are distributed according to a mixture distribution whose parameters depend on the signal sparsity. Due to the complexity of the exact mixture model, we introduce an approximate two-component Gaussian mixture model whose parameters can be estimated via expectation-maximization techniques. We demonstrate that the above model is accurate in the large system limit for a proper choice of the sensing matrix sparsifying parameter. Moreover, experimental results demonstrate that the method is robust under different signal-to-noise ratios and outperforms existing sparsity estimation techniques.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 4029–4033, Shanghai, China, 20-25/3/2016, info:cnr-pdr/source/autori:Ravazzi, C.; Fosson, S. M.; Bianchi, T.; Magli, E./congresso_nome:IEEE International Conference on Acoustics, Speech, and Signal Processing/congresso_luogo:Shanghai, China/congresso_data:20-25%2F3%2F2016/anno:2016/pagina_da:4029/pagina_a:4033/intervallo_pagine:4029–4033
Accession number :
edsair.cnr...........767fd86cf51b052032e6c6717ee8ef21