Back to Search Start Over

Multiple clustering solutions analysis through least-squares consensus algorithms

Authors :
Murino
L.a
Angelini
C.b
Bifulco
I.a
De Feis
I.b
Raiconi
G.a
Tagliaferri
R.a
Source :
Lecture notes in computer science 6160 LNBI (2010): 215–227. doi:10.1007/978-3-642-14571-1_16, info:cnr-pdr/source/autori:Murino, L.a and Angelini, C.b and Bifulco, I.a and De Feis, I.b and Raiconi, G.a and Tagliaferri, R.a/titolo:Multiple clustering solutions analysis through least-squares consensus algorithms/doi:10.1007%2F978-3-642-14571-1_16/rivista:Lecture notes in computer science/anno:2010/pagina_da:215/pagina_a:227/intervallo_pagine:215–227/volume:6160 LNBI
Publication Year :
2010
Publisher :
Springer, Berlin , Germania, 2010.

Abstract

Clustering is one of the most important unsupervised learning problems and it deals with finding a structure in a collection of unlabeled data; however, different clustering algorithms applied to the same data-set produce different solutions. In many applications the problem of multiple solutions becomes crucial and providing a limited group of good clusterings is often more desirable than a single solution. In this work we propose the Least Square Consensus clustering that allows a user to extrapolate a small number of different clustering solutions from an initial (large) set of solutions obtained by applying any clustering algorithm to a given data-set. Two different implementations are presented. In both cases, each consensus is accomplished with a measure of quality defined in terms of Least Square error and a graphical visualization is provided in order to make immediately interpretable the result. Numerical experiments are carried out on both synthetic and real data-sets. © 2010 Springer-Verlag.

Details

Language :
English
Database :
OpenAIRE
Journal :
Lecture notes in computer science 6160 LNBI (2010): 215–227. doi:10.1007/978-3-642-14571-1_16, info:cnr-pdr/source/autori:Murino, L.a and Angelini, C.b and Bifulco, I.a and De Feis, I.b and Raiconi, G.a and Tagliaferri, R.a/titolo:Multiple clustering solutions analysis through least-squares consensus algorithms/doi:10.1007%2F978-3-642-14571-1_16/rivista:Lecture notes in computer science/anno:2010/pagina_da:215/pagina_a:227/intervallo_pagine:215–227/volume:6160 LNBI
Accession number :
edsair.cnr...........68f87163914b0895a3d10e73130dc5ba
Full Text :
https://doi.org/10.1007/978-3-642-14571-1_16