Back to Search Start Over

A hybrid approach to fuzzy land cover classification

Authors :
Binaghi E.
P.A. Brivio
P. Ghezzi
A. Rampini
E. Zilioli
Source :
Pattern recognition letters 17 (1996): 1399–1410. doi:10.1016/S0167-8655(96)00096-7, info:cnr-pdr/source/autori:Binaghi E., P.A. Brivio, P. Ghezzi, A. Rampini and E. Zilioli/titolo:A hybrid approach to fuzzy land cover classification/doi:10.1016%2FS0167-8655(96)00096-7/rivista:Pattern recognition letters/anno:1996/pagina_da:1399/pagina_a:1410/intervallo_pagine:1399–1410/volume:17
Publication Year :
1996
Publisher :
North-Holland, Amsterdam , Paesi Bassi, 1996.

Abstract

We propose here a fuzzy hybrid methodology for the classification, conceived as a cognitive process, of remote sensing images. The salient aspect of the approach is the combined use of different techniques: the linear mixture model, a supervised fuzzy statistical classifier and a fuzzy labeling technique, An application for the identification of rice crops in a Landsat Thematic Mapper image has been developed with the aim of experimentally evaluating the performance of the overall strategy in a real domain where fuzzy membership to classes are essential in class discrimination, The results have then been compared with those obtained by means of the Maximum Likelihood classifier.

Details

Language :
English
Database :
OpenAIRE
Journal :
Pattern recognition letters 17 (1996): 1399–1410. doi:10.1016/S0167-8655(96)00096-7, info:cnr-pdr/source/autori:Binaghi E., P.A. Brivio, P. Ghezzi, A. Rampini and E. Zilioli/titolo:A hybrid approach to fuzzy land cover classification/doi:10.1016%2FS0167-8655(96)00096-7/rivista:Pattern recognition letters/anno:1996/pagina_da:1399/pagina_a:1410/intervallo_pagine:1399–1410/volume:17
Accession number :
edsair.cnr...........5adc71ca876e742ede3ec779f56b1a25
Full Text :
https://doi.org/10.1016/S0167-8655(96)00096-7