Back to Search
Start Over
A Demonstration of Extremely Low Latency $\gamma$-ray, X-Ray & UV Follow-Up of a Millisecond Radio Transient
- Publication Year :
- 2020
-
Abstract
- We report results of a novel high-energy follow-up observation of a potential Fast Radio Burst. The radio burst was detected by VLA/realfast and followed-up by the Neil Gehrels Swift Observatory in very low latency utilizing new operational capabilities of Swift (arXiv:2005.01751), with pointed soft X-ray and UV observations beginning at T0+32 minutes, and hard X-ray/gamma-ray event data saved around T0. These observations are $>10$x faster than previous X-ray/UV follow-up of any radio transient to date. No emission is seen coincident with the FRB candidate at T0, with a 0.2s fluence $5\sigma$ upper limit of $1.35\times10^{-8}$ erg cm$^{-2}$ (14-195 keV) for a SGR 1935+2154-like flare, nor at T0+32 minutes down to $3\sigma$ upper limits of 22.18 AB mag in UVOT u band, and $3.33\times10^{-13}$ erg cm$^{-2}$ s$^{-1}$ from 0.3-10 keV for the 2 ks observation. The candidate FRB alone is not significant enough to be considered astrophysical, so this note serves as a technical demonstration. These new Swift operational capabilities will allow future FRB detections to be followed up with Swift at even lower latencies than demonstrated here: 15-20 minutes should be regularly achievable, and 5-10 minutes occasionally achievable. We encourage FRB detecting facilities to release alerts in low latency to enable this science.<br />Comment: Technical note and capability update for the community. We encourage low latency FRB alerts from relevant facilities to enable this science
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.arXiv.........05d2ec68b40f04754de253c8d88455c9