Back to Search Start Over

NLOS mitigation in indoor localization by marginalized Monte Carlo Gaussian smoothing

Authors :
Vilà-Valls J.
Closas P.
Source :
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, r-CTTC. Repositorio Institucional Producción Científica del Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Universitat Oberta de Catalunya (UOC)
Publication Year :
2017
Publisher :
Springer Publishing Company, 2017.

Abstract

One of the main challenges in indoor time-of-arrival (TOA)-based wireless localization systems is to mitigate non-line-of-sight (NLOS) propagation conditions, which degrade the overall positioning performance. The positive skewed non-Gaussian nature of TOA observations under LOS/NLOS conditions can be modeled as a heavy-tailed skew t-distributed measurement noise. The main goal of this article is to provide a robust Bayesian inference framework to deal with target localization under NLOS conditions. A key point is to take advantage of the conditionally Gaussian formulation of the skew t-distribution, thus being able to use computationally light Gaussian filtering and smoothing methods as the core of the new approach. The unknown non-Gaussian noise latent variables are marginalized using Monte Carlo sampling. Numerical results are provided to show the performance improvement of the proposed approach. © 2017, The Author(s).

Details

ISSN :
16876172
Database :
OpenAIRE
Journal :
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, r-CTTC. Repositorio Institucional Producción Científica del Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Universitat Oberta de Catalunya (UOC)
Accession number :
edsair.RECOLECTA.....e4482d69f83d39261c5aba56ebf3f23f
Full Text :
https://doi.org/10.1186/s13634-017-0498-4&partnerID=40&md5=e60cc9505c9570845f86579c350b0a9a