Back to Search
Start Over
NLOS mitigation in indoor localization by marginalized Monte Carlo Gaussian smoothing
- Source :
- EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, r-CTTC. Repositorio Institucional Producción Científica del Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Universitat Oberta de Catalunya (UOC)
- Publication Year :
- 2017
- Publisher :
- Springer Publishing Company, 2017.
-
Abstract
- One of the main challenges in indoor time-of-arrival (TOA)-based wireless localization systems is to mitigate non-line-of-sight (NLOS) propagation conditions, which degrade the overall positioning performance. The positive skewed non-Gaussian nature of TOA observations under LOS/NLOS conditions can be modeled as a heavy-tailed skew t-distributed measurement noise. The main goal of this article is to provide a robust Bayesian inference framework to deal with target localization under NLOS conditions. A key point is to take advantage of the conditionally Gaussian formulation of the skew t-distribution, thus being able to use computationally light Gaussian filtering and smoothing methods as the core of the new approach. The unknown non-Gaussian noise latent variables are marginalized using Monte Carlo sampling. Numerical results are provided to show the performance improvement of the proposed approach. © 2017, The Author(s).
- Subjects :
- Inference engines
Time of arrival
Pulse shaping circuits
Bayesian inference
Gaussian distribution
Monte Carlo methods
Gaussian filtering
Spurious signal noise
Distributed measurements
Bayesian networks
Nlos mitigations
Indoor positioning systems
Gaussian noise (electronic)
Indoor localization
Monte Carlo integration
Subjects
Details
- ISSN :
- 16876172
- Database :
- OpenAIRE
- Journal :
- EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, r-CTTC. Repositorio Institucional Producción Científica del Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Universitat Oberta de Catalunya (UOC)
- Accession number :
- edsair.RECOLECTA.....e4482d69f83d39261c5aba56ebf3f23f
- Full Text :
- https://doi.org/10.1186/s13634-017-0498-4&partnerID=40&md5=e60cc9505c9570845f86579c350b0a9a