Back to Search Start Over

THE NORM OF THE PRODUCT OF POLYNOMIALS IN INFINITE DIMENSIONS

Authors :
Boyd, C.
Ryan, R. A.
Source :
Proceedings of the Edinburgh Mathematical Society; February 2006, Vol. 49 Issue: 1 p17-28, 12p
Publication Year :
2006

Abstract

Given a Banach space $E$ and positive integers $k$ and $l$ we investigate the smallest constant $C$ that satisfies $\|P\|\hskip1pt\|Q\|\le C\|PQ\|$ for all $k$-homogeneous polynomials $P$ and $l$-homogeneous polynomials $Q$ on $E$. Our estimates are obtained using multilinear maps, the principle of local reflexivity and ideas from the geometry of Banach spaces (type and uniform convexity). We also examine the analogous problem for general polynomials on Banach spaces.

Details

Language :
English
ISSN :
00130915 and 14643839
Volume :
49
Issue :
1
Database :
Supplemental Index
Journal :
Proceedings of the Edinburgh Mathematical Society
Publication Type :
Periodical
Accession number :
ejs8394193
Full Text :
https://doi.org/10.1017/S0013091504000756