Back to Search
Start Over
THE NORM OF THE PRODUCT OF POLYNOMIALS IN INFINITE DIMENSIONS
- Source :
- Proceedings of the Edinburgh Mathematical Society; February 2006, Vol. 49 Issue: 1 p17-28, 12p
- Publication Year :
- 2006
-
Abstract
- Given a Banach space $E$ and positive integers $k$ and $l$ we investigate the smallest constant $C$ that satisfies $\|P\|\hskip1pt\|Q\|\le C\|PQ\|$ for all $k$-homogeneous polynomials $P$ and $l$-homogeneous polynomials $Q$ on $E$. Our estimates are obtained using multilinear maps, the principle of local reflexivity and ideas from the geometry of Banach spaces (type and uniform convexity). We also examine the analogous problem for general polynomials on Banach spaces.
Details
- Language :
- English
- ISSN :
- 00130915 and 14643839
- Volume :
- 49
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- Proceedings of the Edinburgh Mathematical Society
- Publication Type :
- Periodical
- Accession number :
- ejs8394193
- Full Text :
- https://doi.org/10.1017/S0013091504000756