Back to Search Start Over

Differential blocking actions of 4′-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) and γ-hexachlorocyclohexane (γ-HCH) on γ-aminobutyric acid- and glutamate-induced responses of American cockroach neurons

Authors :
Ihara, Makoto
Ishida, Chiharu
Okuda, Hiroshi
Ozoe, Yoshihisa
Matsuda, Kazuhiko
Source :
Invertebrate Neuroscience; November 2005, Vol. 5 Issue: 3-4 p157-164, 8p
Publication Year :
2005

Abstract

4′-Ethynyl-4-n-propylbicycloorthobenzoate (EBOB) has been employed extensively as a radioligand in binding assays to evaluate the pharmacology of γ-aminobutyric acid (GABA)-gated Cl− channels (GABARs) of insects and mammals, and γ-hexachlorocyclohexane (γ-HCH) was used as an insecticide targeting insect GABARs. Since recent studies have shown that not only GABARs but also glutamate-gated chloride channels (GluCls) are blocked by picrotoxinin, dieldrin and fipronil, the actions of EBOB and γ-HCH on native GABARs and GluCls of terminal abdominal ganglion neurons in American cockroach (Periplaneta americana) were tested using patch-clamp electrophysiology. A marked run-down of the GABA- and glutamate-induced responses of the cockroach neurons occurred, when a standard pipette solution was employed, but addition of pyruvate to the solution permitted stable recordings of these responses. With this solution, EBOB and γ-HCH were found to block not only the GABA- but also glutamate-gated responses, with the actions augmented by repeated co-application with the agonists. It was also found that prolonged pre-application of EBOB and γ-HCH prior to co-application with GABA and glutamate resulted in enhanced blocking actions, indicating resting-state actions of the blockers. The blocking actions of EBOB and γ-HCH on the GABA- and glutamate-induced responses were compared by determining IC50 values under steady state condition. The IC50 values for the actions of EBOB on GABAR and GluCls differed less than those of γ-HCH.

Details

Language :
English
ISSN :
13542516 and 14391104
Volume :
5
Issue :
3-4
Database :
Supplemental Index
Journal :
Invertebrate Neuroscience
Publication Type :
Periodical
Accession number :
ejs7891252
Full Text :
https://doi.org/10.1007/s10158-005-0008-5