Back to Search Start Over

The Asymptotic Behavior of the Principal Eigenvalue for Small Perturbations of Critical One-Dimensional Schrödinger Operators with V(X) = l <SUB>±</SUB> /x2 for ±x ≫ 1

Authors :
Englander, J.
Pinsky, R.G.
Source :
Journal of Functional Analysis; November 1, 1995, Vol. 133 Issue: 2 p501-515, 15p
Publication Year :
1995

Abstract

Let H = −d&lt;superscript&gt;2&lt;/superscript&gt;/dx&lt;superscript&gt;2&lt;/superscript&gt; + V on R, where V(x) = l&lt;SUB&gt;1&lt;/SUB&gt;/x&lt;superscript&gt;2&lt;/superscript&gt;, on x ≫ 1, and V(x) = l&lt;SUB&gt;2&lt;/SUB&gt;/x&lt;superscript&gt;2&lt;/superscript&gt;, on x ≪ −1, for constants l&lt;SUB&gt;1&lt;/SUB&gt;, l&lt;SUB&gt;2&lt;/SUB&gt;. Assume that H is a critical operator. It turns out that it is possible to realize a critical operator H of the above form if and only if min(l&lt;SUB&gt;1&lt;/SUB&gt;, l&lt;SUB&gt;2&lt;/SUB&gt;) ≥ −&#188;. Denote the ground state of H by φ&lt;SUB&gt;0&lt;/SUB&gt;. Let W be a compactly supported function and define H&lt;SUB&gt;ε&lt;/SUB&gt; = H + εW. It is known that Hε will possess a negative eigenvalue for ε &gt; 0 if and only if I = ∫&lt;SUB&gt;R&lt;/SUB&gt; Wφ&lt;superscript&gt;2&lt;/superscript&gt;&lt;SUB&gt;0&lt;/SUB&gt; dx ≤ 0. This negative eigenvalue, λ&lt;SUB&gt;ε&lt;/SUB&gt;, is unique if ε &gt; 0 is sufficiently small. We obtain the leading order asymptotics for λ&lt;SUB&gt;ε&lt;/SUB&gt;, as ε → 0. In particular, the order of decay depends on whether I = 0 or I &amp;lt; 0, and also varies continuously as min(l&lt;SUB&gt;1&lt;/SUB&gt;, l&lt;SUB&gt;2&lt;/SUB&gt;) varies in the interval [−&#188;, &#190;]. The order of decay is independent of min(l&lt;SUB&gt;1&lt;/SUB&gt;, l&lt;SUB&gt;2&lt;/SUB&gt;), for min(l&lt;SUB&gt;1&lt;/SUB&gt;, l&lt;SUB&gt;2&lt;/SUB&gt;) &gt; &#190;, but this order is not equal to the order when min(l&lt;SUB&gt;1&lt;/SUB&gt;, l&lt;SUB&gt;2&lt;/SUB&gt;) = &#190;.Copyright 1995, 1999 Academic Press, Inc.

Details

Language :
English
ISSN :
00221236 and 10960783
Volume :
133
Issue :
2
Database :
Supplemental Index
Journal :
Journal of Functional Analysis
Publication Type :
Periodical
Accession number :
ejs743466
Full Text :
https://doi.org/10.1006/jfan.1995.1136