Back to Search
Start Over
The Asymptotic Behavior of the Principal Eigenvalue for Small Perturbations of Critical One-Dimensional Schrödinger Operators with V(X) = l <SUB>±</SUB> /x2 for ±x ≫ 1
- Source :
- Journal of Functional Analysis; November 1, 1995, Vol. 133 Issue: 2 p501-515, 15p
- Publication Year :
- 1995
-
Abstract
- Let H = −d<superscript>2</superscript>/dx<superscript>2</superscript> + V on R, where V(x) = l<SUB>1</SUB>/x<superscript>2</superscript>, on x ≫ 1, and V(x) = l<SUB>2</SUB>/x<superscript>2</superscript>, on x ≪ −1, for constants l<SUB>1</SUB>, l<SUB>2</SUB>. Assume that H is a critical operator. It turns out that it is possible to realize a critical operator H of the above form if and only if min(l<SUB>1</SUB>, l<SUB>2</SUB>) ≥ −¼. Denote the ground state of H by φ<SUB>0</SUB>. Let W be a compactly supported function and define H<SUB>ε</SUB> = H + εW. It is known that Hε will possess a negative eigenvalue for ε > 0 if and only if I = ∫<SUB>R</SUB> Wφ<superscript>2</superscript><SUB>0</SUB> dx ≤ 0. This negative eigenvalue, λ<SUB>ε</SUB>, is unique if ε > 0 is sufficiently small. We obtain the leading order asymptotics for λ<SUB>ε</SUB>, as ε → 0. In particular, the order of decay depends on whether I = 0 or I &lt; 0, and also varies continuously as min(l<SUB>1</SUB>, l<SUB>2</SUB>) varies in the interval [−¼, ¾]. The order of decay is independent of min(l<SUB>1</SUB>, l<SUB>2</SUB>), for min(l<SUB>1</SUB>, l<SUB>2</SUB>) > ¾, but this order is not equal to the order when min(l<SUB>1</SUB>, l<SUB>2</SUB>) = ¾.Copyright 1995, 1999 Academic Press, Inc.
Details
- Language :
- English
- ISSN :
- 00221236 and 10960783
- Volume :
- 133
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Journal of Functional Analysis
- Publication Type :
- Periodical
- Accession number :
- ejs743466
- Full Text :
- https://doi.org/10.1006/jfan.1995.1136