Back to Search Start Over

The interleukin-1 type 2 receptor gene displays immediate early gene responsiveness in glucocorticoid-stimulated human epidermal keratinocytes.

Authors :
Lukiw, W J
Martinez, J
Pelaez, R P
Bazan, N G
Source :
Journal of Biological Chemistry; March 1999, Vol. 274 Issue: 13 p8630-8, 9p
Publication Year :
1999

Abstract

Human epidermal keratinocytes (HEKs) in primary culture (P2-P4) were used to study glucocorticoid (GC)-mediated transcription of the genes encoding the constitutively expressed interleukin-1 type 1 receptor (IL-1R1) and the inducible interleukin-1 type 2 receptor (IL-1R2). Utilizing Northern dot blot analysis and a quantitative reverse transcription-polymerase chain reaction protocol for IL-1R1 and IL-1R2, dexamethasone and, in particular, the budesonide epimer R were shown to effectively and rapidly induce transcription from the IL-IR2 gene when compared with IL-1R1 or beta-actin RNA message levels in the same sample. Southern blot analysis of newly generated IL-1R2 reverse transcription-polymerase chain reaction products using end-labeled IL-1R2 intron probes suggested that GC enhancement of IL-1R2 expression was regulated primarily at the level of de novo transcription. GC-induced IL-1R2 gene transcription displayed features characteristic of a classical immediate early gene response, including a signal transduction function, a relatively low basal abundance, a rapid, transient induction, cycloheximide superinduction, actinomycin D suppression, and a rapid decay of IL-1R2 RNA message. Parallel time course kinetic analysis of IL-1R2 RNA message levels with Western immunoblotting revealed tight coupling of de novo IL-IR2 gene transcription with translation of the IL-1R2 RNA message; a newly synthesized ( approximately 46-kDa) IL-1R2 protein was detected in the HEK growth medium as early as 1 h after budesonide epimer R treatment. These data indicate that different GC compounds can variably up-regulate the IL-1R2 response in HEKs through transcription-mediated mechanisms and, for the first time, suggest that a gene encoding a soluble cytokine receptor can respond like an immediate early gene.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
274
Issue :
13
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs7250469