Back to Search Start Over

Modulation of pancreatic acinar cell to cell coupling during ACh-evoked changes in cytosolic Ca2+.

Authors :
Chanson, M
Mollard, P
Meda, P
Suter, S
Jongsma, H J
Source :
Journal of Biological Chemistry; January 1999, Vol. 274 Issue: 1 p282-7, 6p
Publication Year :
1999

Abstract

The temporal changes in cytosolic free Ca2+ ([Ca2+]i), Ca2+-dependent membrane currents (Im), and gap junctional current (Ij) elicited by acetylcholine (ACh) were measured in rat pancreatic acinar cells using digital imaging and dual perforated patch-clamp recording. ACh (50 nM-5 microM) increased [Ca2+]i and evoked Im currents without altering Ij in 19 of 37 acinar cell pairs. Although [Ca2+]i rose asynchronously in cells comprising a cluster, the delay of the [Ca2+]i responses decreased with increasing ACh concentrations. Perfusion of inositol 1,4,5-trisphosphate (IP3) into one cell of a cluster resulted in [Ca2+]i responses in neighboring cells that were not necessarily in direct contact with the stimulated one. This suggests that extensive coupling between acinar cells provides a pathway for cell-to-cell diffusion of Ca2+-releasing signals. Strikingly, maximal (1-5 microM) ACh concentrations reduced Ij by 69 +/- 15% (n = 9) in 25% of the cell pairs subjected to dual patch-clamping. This decrease occurred shortly after the Im peak and was prevented by incubating acinar cells in a Ca2+-free medium, suggesting that uncoupling was subsequent to the initiation of the Ca2+-mobilizing responses. Depletion of Ca2+-sequestering stores by thapsigargin resulted in a reduction of intercellular communication similar to that observed with ACh. In addition, ACh-induced uncoupling was prevented by blocking nitric oxide production with L-nitro-arginine and restored by exposing acinar cells to dibutyryl cGMP. The results suggest that ACh-induced uncoupling and capacitative Ca2+ entry are regulated concurrently. Closure of gap junction channels may occur to functionally isolate nearby cells differing in their intrinsic sensitivity to ACh and thereby to allow for sustained activity of groups of secreting cells.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
274
Issue :
1
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs7248011