Back to Search
Start Over
Solution structure and main chain dynamics of the regulatory domain (Residues 1-91) of human cardiac troponin C.
- Source :
- Journal of Biological Chemistry; June 1998, Vol. 273 Issue: 25 p15633-8, 6p
- Publication Year :
- 1998
-
Abstract
- The three-dimensional structure of calcium-loaded regulatory, i.e. N-terminal, domain (1-91) of human cardiac troponin C (cNTnC) was determined by NMR in water/trifluoroethanol (91:9 v/v) solution. The single-calcium-loaded cardiac regulatory domain is in a "closed" conformation with comparatively little exposed hydrophobic surface. Difference distance matrices computed from the families of Ca2+-cNTnC, the apo and two-calcium forms of the skeletal TnC (sNTnC) structures reveal similar relative orientations for the N, A, and D helices. The B and C helices are closer to the NAD framework in Ca2+-cNTnC and in apo-sNTnC than in 2.Ca2+-sNTnC. However, there is an indication of a conformational exchange based on broad 15N resonances for several amino acids measured at several temperatures. A majority of the amides in the alpha-helices and in the calcium binding loop exhibit very fast motions with comparatively small amplitudes according to the Lipari-Szabo model. A few residues at the N and C termini are flexible. Data were recorded from nonlabeled and 15N-labeled samples, and backbone dynamics was investigated by 15N T1, T2, and heteronuclear nuclear Overhauser effect as well as by relaxation interference measurements.
Details
- Language :
- English
- ISSN :
- 00219258 and 1083351X
- Volume :
- 273
- Issue :
- 25
- Database :
- Supplemental Index
- Journal :
- Journal of Biological Chemistry
- Publication Type :
- Periodical
- Accession number :
- ejs7231756