Back to Search Start Over

NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties.

Authors :
Brunner, N A
Brinkmann, H
Siebers, B
Hensel, R
Source :
Journal of Biological Chemistry; March 1998, Vol. 273 Issue: 11 p6149-56, 8p
Publication Year :
1998

Abstract

The hyperthermophilic archaeum Thermoproteus tenax possesses two glyceraldehyde-3-phosphate dehydrogenases differing in cosubstrate specificity and phosphate dependence of the catalyzed reaction. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase catalyzes the phosphate-independent irreversible oxidation of D-glyceraldehyde 3-phosphate to 3-phosphoglycerate. The coding gene was cloned, sequenced, and expressed in Escherichia coli. Sequence comparisons showed no similarity to phosphorylating glyceraldehyde-3-phosphate dehydrogenases but revealed a relationship to aldehyde dehydrogenases, with the highest similarity to the subgroup of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenases. The activity of the enzyme is affected by a series of metabolites. All effectors tested influence the affinity of the enzyme for its cosubstrate NAD+. Whereas NADP(H), NADH, and ATP reduce the affinity for the cosubstrate, AMP, ADP, glucose 1-phosphate, and fructose 6-phosphate increase the affinity for NAD+. Additionally, most of the effectors investigated induce cooperativity of NAD+ binding. The irreversible catabolic oxidation of glyceraldehyde 3-phosphate, the control of the enzyme by energy charge of the cell, and the regulation by intermediates of glycolysis and glucan degradation identify the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase as an integral constituent of glycolysis in T. tenax. Its regulatory properties substitute for those lacking in the reversible nonregulated pyrophosphate-dependent phosphofructokinase in this variant of the Embden-Meyerhof-Parnas pathway.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
273
Issue :
11
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs7217178