Back to Search Start Over

Molecular modeling-guided mutagenesis of the extracellular part of gp130 leads to the identification of contact sites in the interleukin-6 (IL-6).IL-6 receptor.gp130 complex.

Authors :
Horsten, U
Müller-Newen, G
Gerhartz, C
Wollmer, A
Wijdenes, J
Heinrich, P C
Grötzinger, J
Source :
Journal of Biological Chemistry; September 1997, Vol. 272 Issue: 38 p23748-57, 10p
Publication Year :
1997

Abstract

The transmembrane protein gp130 is involved in many cytokine-mediated cellular responses and acts therein as the signal-transducing subunit. In the case of interleukin-6 (IL-6), the signal-transducing complex is composed of the ligand IL-6, the IL-6 receptor (IL-6R, gp80, CD126), and at least two gp130 (CD130) molecules. The extracellular part of the signal transducer gp130 consists of six fibronectin type III-like domains. It has recently been shown that the three membrane distal domains bind to the IL-6. IL-6R complex. A structural model of the IL-6.IL-6R.gp130 complex enabled us to propose amino acid residues in these domains of gp130 interacting with IL-6 bound to its receptor. The proposed amino acid residues located in the B'C' loop (Val252) and in the F'G' loop (Gly306, Lys307) of domain 3 and in the hinge region (Tyr218) connecting domains 2 and 3 of gp130 were mutated to disturb ternary complex formation. Binding of wild type and mutants of the extracellular region of gp130 was studied by use of a co-precipitation assay and Scatchard analysis. All mutants showed decreased binding to the IL-6.IL-6R complex. Biological function of the membrane-bound gp130 mutants was studied by STAT (signal transducer and activator of transcription) activation in COS-7 cells and by proliferation of stably transfected Ba/F3 cells. Reduced binding of the mutants was accompanied by decreased biological activity. The combined approach of molecular modeling and site-directed mutagenesis has led to the identification of amino acid residues in gp130 required for complex formation with IL-6 and its receptor.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
272
Issue :
38
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs7209358