Back to Search
Start Over
Modulation of bradykinin receptor ligand binding affinity and its coupled G-proteins by nitric oxide.
- Source :
- Journal of Biological Chemistry; August 1997, Vol. 272 Issue: 31 p19601-8, 8p
- Publication Year :
- 1997
-
Abstract
- To determine whether nitric oxide (NO) can modulate bradykinin (BK) signaling pathways, we treated endothelial cells with an NO donor, S-nitrosoglutathione (GSNO), to determine its effect(s) on G-proteins (Gi and Gq) that are coupled to the type II kinin (BK2) receptor. Radioligand binding assays and Western analyses showed that GSNO (10-500 microM, 0-72 h) did not alter the expression of BK2 receptor, Gi, or Gq. However, GSNO caused a 6-fold increase in basal cGMP production and decreased high affinity BK bindings sites and GTPase activity by 74 and 85%, respectively. The cGMP analogue, dibutyryl-cGMP, also inhibited BK-stimulated GTPase activity by 74% suggesting that some of the effects of NO may be mediated through activation of guanylyl cyclase. The NO synthase inhibitor, Nomega-monomethyl-L-arginine, inhibited endogenous NO synthase activity and cGMP production by 91 and 76%, respectively, but increased BK-stimulated GTPase activity by 61%. To determine which G-proteins are affected by NO, we performed GTP binding assays with [35S]GTPgammaS followed by immunoprecipitation with specific G-protein antisera. Both GSNO and dibutyryl-cGMP increased basal G-protein GTP binding activities by 18-26%. However, GSNO decreased BK-stimulated Galphai2, Galphai3, and Galphaq/11 GTP binding activity by 93, 61, and 90%, respectively, whereas epinephrine-stimulated Galphas GTP binding activity was unaffected. These results suggest that NO can modulate BK signaling pathways by selectively inhibiting G-proteins of the Gi and Gq family.
Details
- Language :
- English
- ISSN :
- 00219258 and 1083351X
- Volume :
- 272
- Issue :
- 31
- Database :
- Supplemental Index
- Journal :
- Journal of Biological Chemistry
- Publication Type :
- Periodical
- Accession number :
- ejs7208835