Back to Search Start Over

Insights into the Molecular Mechanism of Mitochondrial Toxicity by AIDS Drugs*

Authors :
Feng, Joy Y.
Johnson, Allison A.
Johnson, Kenneth A.
Anderson, Karen S.
Source :
Journal of Biological Chemistry; June 2001, Vol. 276 Issue: 26 p23832-23837, 6p
Publication Year :
2001

Abstract

Several of the nucleoside analogs used in the treatment of AIDS exhibit a delayed clinical toxicity limiting their usefulness. The toxicity of nucleoside analogs may be related to their effects on the human mitochondrial DNA polymerase (Pol γ), the polymerase responsible for mitochondrial DNA replication. Among the AIDS drugs approved by the FDA for clinical use, two are modified cytosine analogs, Zalcitabine (2′,3′-dideoxycytidine (ddC)) and Lamivudine (β-d-(+)-2′,3′-dideoxy-3′-thiacytidine ((−)3TC])). (−)3TC is the only analog containing an unnaturall(−) nucleoside configuration and is well tolerated by patients even after long term administration. In cell culture (−)3TC is less toxic than its d(+) isomer, (+)3TC, containing the natural nucleoside configuration, and both are considerably less toxic than ddC. We have investigated the mechanistic basis for the differential toxicity of these three cytosine analogs by comparing the effects of dideoxy-CTP), (+)3TC-triphosphate (TP), and (−)3TC-TP on the polymerase and exonuclease activities of recombinant human Pol γ. This analysis reveals that Pol γ incorporates (−)3TC-triphosphate 16-fold less efficiently than the corresponding (+)isomer and 1140-fold less efficiently than dideoxy-CTP, showing a good correlation between incorporation rate and toxicity. The rates of excision of the incorporated analogs from the chain-terminated 3′-end of the DNA primer by the 3′-5′-exonuclease activity of Pol γ were similar (0.01 s−1) for both 3TC analogs. In marked contrast, the rate of exonuclease removal of a ddC chain-terminated DNA occurs at least 2 orders of magnitude slower, suggesting that the failure of the exonuclease to remove ddC may play a major role in its greater toxicity. This study demonstrates that direct analysis of the mitochondrial DNA polymerase structure/function relationships may provide valuable insights leading to the design of less toxic inhibitors.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
276
Issue :
26
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs7173079
Full Text :
https://doi.org/10.1074/jbc.M101156200