Back to Search Start Over

A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum.

Authors :
Otsu, M
Urade, R
Kito, M
Omura, F
Kikuchi, M
Source :
Journal of Biological Chemistry; June 1995, Vol. 270 Issue: 25 p14958-61, 4p
Publication Year :
1995

Abstract

Wild-type human lysozyme (hLZM) is secreted when expressed in mouse L cells, whereas misfolded mutant hLZMs are retained and eventually degraded in a pre-Golgi compartment (Omura, F., Otsu, M., Yoshimori, T., Tashiro, Y., and Kikuchi, M. (1992) Eur. J. Biochem. 210, 591-599). These misfolded mutant hLZMs are associated with protein disulfide isomerase (Otsu, M., Omura, F., Yoshimori, T., and Kikuchi, M. (1994) J. Biol. Chem. 269, 6874-6877). From the observation that this degradation is sensitive to cysteine protease inhibitors, such as N-acetyl-leucyl-leucyl-norleucinal and N-acetyl-leucyl-leucyl-methioninal, but not to the serine protease inhibitors, 1-chloro-3-tosylamido-7-amino-2-heptanone and (p-amidinophenyl)methanesulfonyl fluoride, it was suggested that some cysteine proteases are likely responsible for the degradation of abnormal proteins in the endoplasmic reticulum (ER). ER-60 protease (ER-60), an ER resident protein with cysteine protease activity (Urade, R., Nasu, M., Moriyama, T., Wada, K., and Kito, M. (1992) J. Biol. Chem. 267, 15152-15159), was found to associate with misfolded hLZMs, but not with the wild-type protein, in mouse L cells. Furthermore, denatured hLZM is degraded by ER-60 in vitro, whereas native hLZM is not. These results suggest that ER-60 could be a component of the proteolytic machinery for the degradation of misfolded mutant hLZMs in the ER.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
270
Issue :
25
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs7056316