Back to Search Start Over

Grain and Domain Microstructure in Long Chain N-Alkane and N-Alkanol Wax Crystals

Authors :
Wynne, Emily
Connell, Simon D.
Shinebaum, Rachael
Blade, Helen
George, Neil
Brown, Andy
Collins, Sean M.
Source :
Crystal Growth & Design; December 2024, Vol. 24 Issue: 24 p10127-10142, 16p
Publication Year :
2024

Abstract

Waxes comprise a diverse set of materials from lubricants and coatings to biological materials such as the intracuticular wax layers on plant leaves that restrict water loss to inhibit dehydration. Despite the often mixed hydrocarbon chain lengths and functional groups within waxes, they show a propensity for ordering into crystalline phases, albeit with a wealth of solid solution behavior and disorder modes that determine chemical transport and mechanical properties. Here, we reveal the microscopic structure and heterogeneity of replica leaf wax models based on the dominant wax types in the Schefflera elegantissimaplant, namely C31H64and C30H61OH and their binary mixtures. We observe defined grain microstructure in C31H64crystals and nanoscale domains of chain-ordered lamellae within these grains. Moreover, nematic phases and dynamical disorder coexist with the domains of ordered lamellae. C30H61OH exhibits more disordered chain packing with no grain structure or lamellar domains. Binary mixtures from 0–50% C30H61OH exhibit a loss of grain structure with increasing alcohol content accompanied by increasingly nematic rather than lamellar chain packing, suggesting a partial but limited solid solution behavior. Together, these results unveil the previously unseen microstructural features governing flexibility and permeability in leaf waxes and outline an approach to microstructure analysis across agrochemicals, pharmaceuticals, and food.

Details

Language :
English
ISSN :
15287483 and 15287505
Volume :
24
Issue :
24
Database :
Supplemental Index
Journal :
Crystal Growth & Design
Publication Type :
Periodical
Accession number :
ejs68224296
Full Text :
https://doi.org/10.1021/acs.cgd.4c00909