Back to Search Start Over

All-natural ceramic composite bone scaffolds of whitlockite/wollastonite fibers: DLP additive manufacturing, microstructure, and performance

Authors :
Guo, Wang
Zhao, Lei
Li, Ping
Wang, Enyu
Pang, Yuanheng
Wei, Yanting
Li, Bowen
Huang, Yanjian
Liu, Bin
Wang, Shan
You, Hui
Long, Yu
Source :
Journal of Materials Research and Technology; November-December 2024, Vol. 33 Issue: 1 p7391-7405, 15p
Publication Year :
2024

Abstract

In this study, we introduced a novel approach by using natural calcium phosphate-based ceramic whitlockite as the matrix, natural silicon-based ceramic wollastonite fiber as the secondary phase, and desktop-level DLP 3D printing as the fabrication method to develop an all-natural ceramic porous bone scaffold with excellent mechanical, degradable, biomineralization, and cell responses. The results demonstrated that, at a solid loading of 75 wt% and a sintering temperature of 1000 °C, the compressive strength of the whitlockite porous scaffold reached 20.0 MPa. With the incorporation of wollastonite fiber, the compressive strength of the composite ceramic scaffold further increased to 31.0 MPa, achieving a top-tier level for desktop-level DLP-printed porous ceramic bone scaffolds. This mechanical enhancement effect was mainly attributed to the grain refinement effect of WF on whitlockite and the fiber reinforcement effect of WF. Additionally, the degradation rate of the composite ceramic scaffold increased with higher WF content, attributed to the rapid degradation rate of WF and the microstructural changes in the whitlockite matrix induced by WF doping. Furthermore, the biomineralization capability and cellular response of the composite ceramic scaffold were enhanced with WF doping, due to the improved degradation ability promoting the release of calcium, phosphate, and silicon ions. This study further validates the applicability of desktop-level DLP for fabricating ceramic bone scaffolds and provides evidence of the potential of all-natural ceramic whitlockite/WF as bone scaffold materials.

Details

Language :
English
ISSN :
22387854
Volume :
33
Issue :
1
Database :
Supplemental Index
Journal :
Journal of Materials Research and Technology
Publication Type :
Periodical
Accession number :
ejs67945197
Full Text :
https://doi.org/10.1016/j.jmrt.2024.11.077