Back to Search Start Over

ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection

Authors :
Pang, Youwei
Zhao, Xiaoqi
Xiang, Tian-Zhu
Zhang, Lihe
Lu, Huchuan
Source :
IEEE Transactions on Pattern Analysis and Machine Intelligence; December 2024, Vol. 46 Issue: 12 p9205-9220, 16p
Publication Year :
2024

Abstract

Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in scale, fuzzy in appearance, and even severely occluded. To this end, we propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and videos, i.e., zooming in and out. Specifically, our approach employs the zooming strategy to learn discriminative mixed-scale semantics by the multi-head scale integration and rich granularity perception units, which are designed to fully explore imperceptible clues between candidate objects and background surroundings. The former's intrinsic multi-head aggregation provides more diverse visual patterns. The latter's routing mechanism can effectively propagate inter-frame differences in spatiotemporal scenarios and be adaptively deactivated and output all-zero results for static representations. They provide a solid foundation for realizing a unified architecture for static and dynamic COD. Moreover, considering the uncertainty and ambiguity derived from indistinguishable textures, we construct a simple yet effective regularization, uncertainty awareness loss, to encourage predictions with higher confidence in candidate regions. Our highly task-friendly framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.

Details

Language :
English
ISSN :
01628828
Volume :
46
Issue :
12
Database :
Supplemental Index
Journal :
IEEE Transactions on Pattern Analysis and Machine Intelligence
Publication Type :
Periodical
Accession number :
ejs67921237
Full Text :
https://doi.org/10.1109/TPAMI.2024.3417329