Cite
Machine Learning Enhancement of Flow Cytometry Data Accelerates the Identification of Minimal Residual Acute Myeloid Leukemia
MLA
Seheult, Jansen N., et al. “Machine Learning Enhancement of Flow Cytometry Data Accelerates the Identification of Minimal Residual Acute Myeloid Leukemia.” Blood, vol. 142, no. 1, Number 1 Supplement 1, Nov. 2023, p. 4339. EBSCOhost, https://doi.org/10.1182/blood-2023-190275.
APA
Seheult, J. N., Shi, M., Olteanu, H., Otteson, G. E., Timm, M. M., Weybright, M. J., & Horna, P. (2023). Machine Learning Enhancement of Flow Cytometry Data Accelerates the Identification of Minimal Residual Acute Myeloid Leukemia. Blood, 142(1, Number 1 Supplement 1), 4339. https://doi.org/10.1182/blood-2023-190275
Chicago
Seheult, Jansen N, Min Shi, Horatiu Olteanu, Gregory E Otteson, Michael M Timm, Matthew J Weybright, and Pedro Horna. 2023. “Machine Learning Enhancement of Flow Cytometry Data Accelerates the Identification of Minimal Residual Acute Myeloid Leukemia.” Blood 142 (1, Number 1 Supplement 1): 4339. doi:10.1182/blood-2023-190275.