Back to Search Start Over

Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data

Authors :
McKnight, Shaun
Tunukovic, Vedran
Gareth Pierce, S.
Mohseni, Ehsan
Pyle, Richard
MacLeod, Charles N.
O'Hare, Tom
Source :
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control; September 2024, Vol. 71 Issue: 9 p1106-1119, 14p
Publication Year :
2024

Abstract

In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model’s performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.

Details

Language :
English
ISSN :
08853010 and 15258955
Volume :
71
Issue :
9
Database :
Supplemental Index
Journal :
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Publication Type :
Periodical
Accession number :
ejs67329549
Full Text :
https://doi.org/10.1109/TUFFC.2024.3408314