Back to Search Start Over

Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

Authors :
Moguilner, Sebastian
Baez, Sandra
Hernandez, Hernan
Migeot, Joaquín
Legaz, Agustina
Gonzalez-Gomez, Raul
Farina, Francesca R.
Prado, Pavel
Cuadros, Jhosmary
Tagliazucchi, Enzo
Altschuler, Florencia
Maito, Marcelo Adrián
Godoy, María E.
Cruzat, Josephine
Valdes-Sosa, Pedro A.
Lopera, Francisco
Ochoa-Gómez, John Fredy
Hernandez, Alfredis Gonzalez
Bonilla-Santos, Jasmin
Gonzalez-Montealegre, Rodrigo A.
Anghinah, Renato
d’Almeida Manfrinati, Luís E.
Fittipaldi, Sol
Medel, Vicente
Olivares, Daniela
Yener, Görsev G.
Escudero, Javier
Babiloni, Claudio
Whelan, Robert
Güntekin, Bahar
Yırıkoğulları, Harun
Santamaria-Garcia, Hernando
Lucas, Alberto Fernández
Huepe, David
Di Caterina, Gaetano
Soto-Añari, Marcio
Birba, Agustina
Sainz-Ballesteros, Agustin
Coronel-Oliveros, Carlos
Yigezu, Amanuel
Herrera, Eduar
Abasolo, Daniel
Kilborn, Kerry
Rubido, Nicolás
Clark, Ruaridh A.
Herzog, Ruben
Yerlikaya, Deniz
Hu, Kun
Parra, Mario A.
Reyes, Pablo
García, Adolfo M.
Matallana, Diana L.
Avila-Funes, José Alberto
Slachevsky, Andrea
Behrens, María I.
Custodio, Nilton
Cardona, Juan F.
Barttfeld, Pablo
Brusco, Ignacio L.
Bruno, Martín A.
Sosa Ortiz, Ana L.
Pina-Escudero, Stefanie D.
Takada, Leonel T.
Resende, Elisa
Possin, Katherine L.
de Oliveira, Maira Okada
Lopez-Valdes, Alejandro
Lawlor, Brian
Robertson, Ian H.
Kosik, Kenneth S.
Duran-Aniotz, Claudia
Valcour, Victor
Yokoyama, Jennifer S.
Miller, Bruce
Ibanez, Agustin
Source :
Nature Medicine; 20240101, Issue: Preprints p1-12, 12p
Publication Year :
2024

Abstract

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.

Details

Language :
English
ISSN :
10788956 and 1546170X
Issue :
Preprints
Database :
Supplemental Index
Journal :
Nature Medicine
Publication Type :
Periodical
Accession number :
ejs67245849
Full Text :
https://doi.org/10.1038/s41591-024-03209-x