Back to Search
Start Over
Enhanced Thermoelectric Properties of Ti2CO2–Bismuthene–Ti2CO2: Optimized Power Factor and Reduced Thermal Conductivity
- Source :
- Nano Letters; September 2024, Vol. 24 Issue: 35 p11090-11096, 7p
- Publication Year :
- 2024
-
Abstract
- In this study, bismuthene was intercalated between bilayer Ti2CTx to induce significant modifications in its electronic and phonon structures, thereby enhancing its thermoelectric properties. First-principles calculations reveal that the insertion of bismuthene transforms the Ti2CO2system from a semiconductor into a metal and optimizes the thermoelectric properties of bilayer Ti2CO2by enhancing its power factor and reducing its lattice thermal conductivity. Under the first-principles calculation parameters used in this study, the ZT of the Ti2CO2system increased from 0.12 to 0.55. Conversely, for metallic bilayer MXenes, the introduction of bismuthene led to a substantial decrease in ZT (from 0.53 to 0.11 in the Ti2C system and from 0.07 to 0.05 in the Ti2CCl2system). This study investigates the physical mechanisms underlying the enhancement of thermoelectric properties from both electronic and phononic perspectives and provides theoretical insights into the development and application of MXene-based thermoelectric materials.
Details
- Language :
- English
- ISSN :
- 15306984 and 15306992
- Volume :
- 24
- Issue :
- 35
- Database :
- Supplemental Index
- Journal :
- Nano Letters
- Publication Type :
- Periodical
- Accession number :
- ejs67191333
- Full Text :
- https://doi.org/10.1021/acs.nanolett.4c03295