Back to Search Start Over

Maintaining Top-<inline-formula><tex-math notation="LaTeX">$t$</tex-math></inline-formula> Cores in Dynamic Graphs

Authors :
Zhang, Yikai
Yu, Jeffrey Xu
Zhang, Ying
Qin, Lu
Source :
IEEE Transactions on Knowledge and Data Engineering; September 2024, Vol. 36 Issue: 9 p4766-4780, 15p
Publication Year :
2024

Abstract

Graphs have been widely used in many applications. One important graph analytics is to explore cohesive subgraphs in a large graph. Among several cohesive subgraphs studied, &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$k$&lt;/tex-math&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mi&gt;k&lt;/mml:mi&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=&quot;zhang-ieq3-3332638.gif&quot;/&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;-core is one that can be computed in linear time for a static graph. Since graphs are evolving in real applications, in this paper, we study core maintenance which is to reduce the computational cost to compute &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$k$&lt;/tex-math&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mi&gt;k&lt;/mml:mi&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=&quot;zhang-ieq4-3332638.gif&quot;/&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;-cores for a graph when graphs are updated from time to time dynamically. We identify drawbacks of the existing efficient algorithm, which needs a large search space to find the vertices that need to be updated, and has high overhead to maintain the index built, when a graph is updated. We propose a new order-based approach to maintain an order, called &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$k$&lt;/tex-math&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mi&gt;k&lt;/mml:mi&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=&quot;zhang-ieq5-3332638.gif&quot;/&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;-order, among vertices, while a graph is updated. Our new algorithm can significantly outperform the state-of-the-art algorithm up to 3 orders of magnitude for the 11 large real graphs tested. In addition, we also study the problem of partial core maintenance, which is to maintain the top-&lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$t$&lt;/tex-math&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=&quot;zhang-ieq6-3332638.gif&quot;/&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; cores of the graph for a given positive integer &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$t$&lt;/tex-math&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=&quot;zhang-ieq7-3332638.gif&quot;/&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;. By instead maintaining only a small subset of cores, further improvement in performance can be obtained.

Details

Language :
English
ISSN :
10414347 and 15582191
Volume :
36
Issue :
9
Database :
Supplemental Index
Journal :
IEEE Transactions on Knowledge and Data Engineering
Publication Type :
Periodical
Accession number :
ejs67109320
Full Text :
https://doi.org/10.1109/TKDE.2023.3332638