Back to Search
Start Over
Dual-Band Photomultiplication-Type Organic Photodetectors with Ultrahigh Signal-to-Noise Ratios
- Source :
- ACS Applied Materials & Interfaces; July 2024, Vol. 16 Issue: 27 p35400-35409, 10p
- Publication Year :
- 2024
-
Abstract
- A series of dual-band photomultiplication (PM)-type organic photodetectors (OPDs) were fabricated by employing a donor(s)/acceptor (100:1, wt/wt) mixed layer and an ultrathin Y6 layer as the active layers, as well as by using PNDIT-F3N as an interfacial layer near the indium tin oxide (ITO) electrode. The dual-band PM-type OPDs exhibit the response range of 330–650 nm under forward bias and the response range of 650–850 nm under reverse bias. The tunable spectral response range of dual-band PM-type OPDs under forward or reverse bias can be explained well from the trapped electron distribution near the electrodes. The dark current density (JD) of the dual-band PM-type OPDs can be efficiently suppressed by employing PNDIT-F3N as the anode interfacial layer and the special active layers with hole-only transport characteristics. The light current density (JL) of the dual-band PM-type OPDs can be slightly increased by incorporating wide-bandgap polymer P-TPDs with relatively large hole mobility (μh) in the active layers. The signal-to-noise ratios of the optimized dual-band PM-type OPDs reach 100,980 under −50 V bias and white light illumination with an intensity of 1.0 mW·cm–2, benefiting from the ultralow JDby employing wide-bandgap PNDIT-F3N as the anode interfacial buffer layer and the increased JLby incorporating appropriate P-TPD in the active layers.
Details
- Language :
- English
- ISSN :
- 19448244
- Volume :
- 16
- Issue :
- 27
- Database :
- Supplemental Index
- Journal :
- ACS Applied Materials & Interfaces
- Publication Type :
- Periodical
- Accession number :
- ejs66735219
- Full Text :
- https://doi.org/10.1021/acsami.4c05558