Back to Search Start Over

DFT Study on the Mechanisms and Selectivities in Rh (III)-Catalyzed [5 + 1] Annulation of 2-Alkenylanilides and 2-Alkylphenols with Allenyl Acetates

Authors :
Ma, Ji
Qi, Simeng
Yan, Guowei
Kirillov, Alexander M.
Yang, Lizi
Fang, Ran
Source :
The Journal of Organic Chemistry; June 2024, Vol. 89 Issue: 12 p8562-8577, 16p
Publication Year :
2024

Abstract

The mechanisms and regio-, chemo-, and stereoselectivity were theoretically investigated in the Rh(III)-catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkylphenols with allenyl acetates. Two different reactants, 2-alkenylanilides and 2-alkylphenols, were selected as model systems in the density functional theory calculations. The obtained theoretical results show that both these reactants exhibit similar steps, namely, (1) N–H/O–H deprotonation and C–H activation, (2) allenyl acetate migratory insertion, (3) β-oxygen elimination, (4) intramolecular nucleophilic addition of the nitrogen/oxygen–rhodium bond resulting in [5 + 1]-annulation, and (5) protonation with the formation of the desired product and regeneration of the Rh(III) catalyst. The theoretical evidence suggests that the selectivity is determined at the step of allenyl acetate’s migratory insertion. Moreover, the regioselectivity is driven by electronic effects, while the interaction energies (C–H···π and C–H···O interactions) play a more imperative role in controlling the stereoselectivity. The obtained theoretical results not only well rationalize the experimental observations but also provide important mechanistic insights for related types of [5 + 1]-annulation reactions.

Details

Language :
English
ISSN :
00223263
Volume :
89
Issue :
12
Database :
Supplemental Index
Journal :
The Journal of Organic Chemistry
Publication Type :
Periodical
Accession number :
ejs66571243
Full Text :
https://doi.org/10.1021/acs.joc.4c00517