Back to Search Start Over

The Fe-MAN Challenge: Ferrates–Microkinetic Assessment of Numerical Quantum Chemistry

Authors :
Rahrt, Rene
Hein-Janke, Björn
Amarasinghe, Kosala N.
Shafique, Muhammad
Feldt, Milica
Guo, Luxuan
Harvey, Jeremy N.
Pollice, Robert
Koszinowski, Konrad
Mata, Ricardo A.
Source :
The Journal of Physical Chemistry - Part A; June 2024, Vol. 128 Issue: 23 p4663-4673, 11p
Publication Year :
2024

Abstract

Organometallic species, such as organoferrate ions, are prototypical nucleophiles prone to reacting with a wide range of electrophiles, including proton donors. In solution, the operation of dynamic equilibria and the simultaneous presence of several organometallic species severely complicate the analysis of these fundamentally important reactions. This can be overcome by gas-phase experiments on mass-selected ions, which allow for the determination of the microscopic reactivity of the target species. In this contribution, we focus on the reactivity of a series of trisarylferrate complexes toward 2,2,2-trifluoroethanol and 2,2-difluoroethanol. By means of mass-spectrometric measurements, we determined the experimental bimolecular rate constants kexpof the gas-phase protolysis reactions of the trisarylferrate anions FePh3–and FeMes3–with the aforementioned acids. Based on these experiments, we carried out a dual blind challenge, inviting theoretical groups to submit their best predictions for the activation barriers and/or theoretical rate constants ktheo. This provides a unique opportunity to evaluate different computational protocols under minimal bias and sets the stage for further benchmarking of quantum chemical methods and data-driven approaches in the future.

Details

Language :
English
ISSN :
10895639 and 15205215
Volume :
128
Issue :
23
Database :
Supplemental Index
Journal :
The Journal of Physical Chemistry - Part A
Publication Type :
Periodical
Accession number :
ejs66540266
Full Text :
https://doi.org/10.1021/acs.jpca.4c01361