Back to Search Start Over

Visualizing and Comparing Machine Learning Predictions to Improve Human-AI Teaming on the Example of Cell Lineage

Authors :
Hong, Jiayi
Maciejewski, Ross
Trubuil, Alain
Isenberg, Tobias
Source :
IEEE Transactions on Visualization and Computer Graphics; 2024, Vol. 30 Issue: 4 p1956-1969, 14p
Publication Year :
2024

Abstract

We visualize the predictions of multiple machine learning models to help biologists as they interactively make decisions about cell lineage—the development of a (plant) embryo from a single ovum cell. Based on a confocal microscopy dataset, traditionally biologists manually constructed the cell lineage, starting from this observation and reasoning backward in time to establish their inheritance. To speed up this tedious process, we make use of machine learning (ML) models trained on a database of manually established cell lineages to assist the biologist in cell assignment. Most biologists, however, are not familiar with ML, nor is it clear to them which model best predicts the embryo's development. We thus have developed a visualization system that is designed to support biologists in exploring and comparing ML models, checking the model predictions, detecting possible ML model mistakes, and deciding on the most likely embryo development. To evaluate our proposed system, we deployed our interface with six biologists in an observational study. Our results show that the visual representations of machine learning are easily understandable, and our tool, LineageD+, could potentially increase biologists’ working efficiency and enhance the understanding of embryos.

Details

Language :
English
ISSN :
10772626
Volume :
30
Issue :
4
Database :
Supplemental Index
Journal :
IEEE Transactions on Visualization and Computer Graphics
Publication Type :
Periodical
Accession number :
ejs65650011
Full Text :
https://doi.org/10.1109/TVCG.2023.3302308