Back to Search
Start Over
Convergent Data-Driven Regularizations for CT Reconstruction
- Source :
- Communications on Applied Mathematics and Computation; June 2024, Vol. 6 Issue: 2 p1342-1368, 27p
- Publication Year :
- 2024
-
Abstract
- The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography (CT). As the (naïve) solution does not depend on the measured data continuously, regularizationis needed to reestablish a continuous dependence. In this work, we investigate simple, but yet still provably convergent approaches to learninglinear regularization methods from data. More specifically, we analyze two approaches: one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work, and one tailored approach in the Fourier domain that is specific to CT-reconstruction. We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on. Finally, we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically, discuss their advantages and disadvantages and investigate the effect of discretization errors at different resolutions.
Details
- Language :
- English
- ISSN :
- 20966385 and 26618893
- Volume :
- 6
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Communications on Applied Mathematics and Computation
- Publication Type :
- Periodical
- Accession number :
- ejs65567489
- Full Text :
- https://doi.org/10.1007/s42967-023-00333-2